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Exercice 1. (a) On se souvient que la matrice A = (a;;) de 'application linéaire f dans
les bases Z et A’ est définie par f(v;) = D> 1", a;jw;. S HA' est orthonormée on a alors

(wy, f(v;)) = (w, apjwi) = akj (Wi, W) = ajj.

=ik
(Noter qu’on n’a pas besoin de supposer que la base %’ est orthonormée).

(b) La matrice P de changement de bases est définie par la relation w; = Z:}:l Dri V-
On a donc

(wi, wj) = <me-vr,2psjvs>
r=1 s=1
- Z Zpripsj <Ur; Us>

r=1 s=1

= Zpriprj
r=1

= prniprj
r=1

(On a utilise a la troisieme ligne ’hypothese (v, v5) = 0,5) .
Ce calcul montre que la base %’ est orthonormée si et seulement si les coefficients de

la matrice P'P sont d;;, c’est-a-dire si P'P est la matrice identité.

Exercice 2. (a) C’est la troisieme réponse qui est correcte. Un vecteur v tel que g(v,v) =
0 s’appelle un wvecteur isotrope, et il existe un vecteur isotrope non nul si et seulement si
0 < p <n (doncsign’est ni défini positive ni définie négative).

(b) La bonne réponse est la premiére option, qui correspond exactement a la définition
d’une forme bilinéaire non dégénérée. (la troisiéme option dit au contraire que la forme
bilinéaire est dégénérée (attention a la logique!) et la seconde option ne dit rien du tout
sur la forme bilinéaire car on peut prendre v = 0).

Exercice 3. 1. Avant de répondre a la premiere question, on rappelle d’abord que le
rang d’une matrice A € M,,(K) est la dimension de I'image de 'application linéaire
associée (i.e. Papplication x — Ax). Il est aussi clair, par le théoréeme du rang, que
rang(A) = n — dim(Ker(A)).
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Par des résultats du premier semestre, on sait que si A et A’ sont deux matrices
telles que A" = QAP ou P et @ sont des matrices inversibles, alors rang(A) =
rang(A’) (on peut par exemple invoquer que sous cette condition A et A’ repré-
sentent la méme application dans des bases différentes. Voir aussi le théoreme
5.12.4 dans le polycopié du premier semestre.)

La preuve de l'affirmation (a) est maintenant tres simple : deux matrices A et
B sont congruentes si et seulement s’il existe une matrice P inversible telle que
A = P'BP. Comme P est inversible, P’ I’est aussi et donc A et B ont méme rang
par I'argument précédent.

Remarque 1. Si K = R est le corps des réel, ’énoncé (a) peut aussi étre vu
comme une conséquence du théoreme de Sylvester.

2. Soit g la forme bilinéaire symétrique dont la matrice de Gram est A. Par le théo-
reme de diagonalisation des formes bilinéaires symétriques vu au cours (théoreme
10.4.1), on sait qu’il existe une base orthogonale {v1, ...,v,} pour . Quitte & ré-
ordonner la base, on peut supposer que Q(vx) = 0si k > r = Rang(Q). On a donc
dans notre base

Q(vi) = PB(vi,v;) =a; #0 sil <i<r, Qvg)=P(vg,vx) =0 sik>r,

et B(v;,v;) = 0si ¢ # j. Rappelons que tout nombre complexe admet une racine
carrée. En définissant une nouvelle base {wy, ..., w, } par w; = \}’(’T pouri=1,..,r

et sinon w; = v;, on obtient que dans la base des w;, la matrice a la forme voulue
car pour ¢ =1,...,r

Blwi, w;) = Q(w;) = lQ(vi) =1.

)

A titre d’exemple, on a la congruence suivante dans My(C) :

b 2)~G 656067

(avec i = /—1).

Exercice 4. Notons ¢ la forme bilinéaire symétrique associée a (), on a donc

g o Y = T1Y1 — T2Y2
T2 ) "\ Y2 '

Par conséquent, les vecteurs u = <zl> et v = <Zl) forment une base de Sylvester pour
2 2

la forme quadratique @) si et seulement si

2 2 2 _ 2
ui —uy =1, vy —vy=-1, wv —ugvy = 0.
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On sait qu'il existe s € R unique tel que uy = sinh(s). Alors uj = 1+ u3 = cosh(s)?.
Par conséquent
e cosh(s)
U= : ,
sinh(s)
avec € = £1. De méme il existe ¢ € R unique tel que v, = sinh(¢) et donc

o= ()

. .. . U1
avec ¢’ = £1. Finalement la condition uv; — usvs = 0 nous dit que — = — ; nous avons
Uy V2

donc tanh(s) = &’ tanh(t), c’est-a-dire t = +s, et par conséquent

= () i e (Y wm

Exercice 5. (a) L'indicatrice positive S; (V, @), 'indicatrice négative S_(V, Q) et le cone
isotrope Sp(V, @) d'une forme quadratique ) définie sur une espace vectoriel réel V' sont
définis respectivement par

S.(V,Q) = {z € VbQ(x) = +1},
S-(V,Q) = {a € VbQ(x) = 1},
So(V.Q) = { € VbQ(x) = 0}.

(b) Soient @1, Q- vérifiant les hypotheses en (b) et soit € V. On doit prouver que
Q1(z) = Q2(x). On distingue trois cas.
1. Sia = Qi(z) > 0, on pose 2’ = x/\/a. Alors 2/ € S, (V,Q1) = S+(V,Q2). Donc
Q2(2") =1 et Qa(z) = aQa(2') = a = Q1(x).
2. Sia=Q(r) <0, on pose ¥’ =x/y/—a. Alors ' € S_(V,Q1) = S_(V, Q). Donc
Q2(2") = =1 et Qa(z) = (—a)Q2(2') = a = Q1(z).
3. Si Qi(z) =0, alors x € Sp(V, Q1) = So(V, Q2). Donc Qa(x) = 0.

On a démontré que dans tous les cas Qz(x) = Q1 ().

(c) Notons @)y la forme quadratique sur V' définie par Qq2(z) = Q(f(x)), et observons
que 'hypothese f(S.(V,Q)) = SL(V, Q) implique que
reS(V,Q2) & Qoz)=Q(f(x)) =1 & [flr)esi(V,Q) & 2e5.(VQ)

Cela prouve que S, (V,Q2) = S+ (V, Q). On prouve de méme que S_(V,Q2) = S_(V, Q)
et So(V,Q2) = So(V, Q). Par le point (b) on déduit maintenant que Q2 = @, c’est-a-dire
Q(f(z)) = Q(z) pour tout z € V.




EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 12 15 mai 2025

Exercice 6. (a) Oui. Le critére pour qu'une matrice soit définie positive comprend en
particulier la condition que son déterminant doit étre > 0, donc non nul, ce qui garantit
qu’elle doit étre inversible.

(b) La réponse est négative. Si A’ = P'AP, alors det(A’) = det(P)*det(A) # det(A)
en général (mais si elles sont orthogonalement congruentes, elles ont le méme détermi-
nant).

(c) Non. Par exemple la forme quadratique sur R? définie par
Q(C(]l, l‘g) = I% + ZL’% + 3[)’)1]}2

vérifie Q(1,0) = Q(0,1) =1 > 0 mais Q(1,—1) = —1.
(d) Correct (il suffit de relire les définitions).

Exercice 7. 1. En calculant la polarisation de ), on obtient 5(u,v) = u3v9 + ugvy
2. La matrice de Gram de cette forme par rapport a la base canonique est B =
0 1
(13)
3. Nous commengons par choisir un vecteur arbitraire u; tel que Q(u;) = £1. On ne
peut pas prendre un multiple de e; = (1,0) car Q(e;) = 0. Un vecteur convenable
est u; = (1, 3). Cherchons maintenant un vecteur v = (z,y) tel que B(u;,v) = 0,

c’est-a-dire 1z +y = 0. Un tel vecteur est v = (2, —1), ce vecteur vérifie Q(v) = —4
et le second vecteur de notre base généralisée est donc donné par

La base orthonormale généralisée (base de Sylvester) cherchée est donc {(1, 1), (1, —3)}-

4. La base précédente vérifie Q(u;) = 1, Q(ug) = —1 et f(ug,uz) = 0. La signature
de @ est donc (p,q) = (1,1).

5. Nous trouvons directement que le polynome caractéristique de B est
xs(t)=1t"—1

donc les valeurs propres de B sont A\; = 1 et Ay = —1. Des vecteurs propres sont
s 1 1
faciles a trouver. Par exemple (1) est vecteur propre pour A = 1 et <_1) est

vecteur propre pour A = —1. Il est clair que ces vecteurs propres sont orthogo-
naux (ce qui est compatible avec le fait que B est une matrice symétrique). Par
conséquent, il suffit de les renormaliser pour avoir une base propre orthonormée.
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1

1 1
On a donc u; = (‘f) et uy = ( V2 > La matrice modale orthogonale

V2 V2

11
cherchée est donc P = [ V2 ¥2|. On vérifie que P'BP = (1 0 >
V22

0 -1

Remarque La base trouvée en (e) est aussi une base de Sylvester, c’est di au fait
que les valeurs propres de B sont £1. En général la diagonalisation orthogonale ne donne
pas directement une base de Sylvester (bien siir apres normalisation des vecteurs on a
bien une base de Sylvester).

Exercice 8. On trouve que le polyndéme caractéristique vaut x4 = —(X — 7)*(X + 2),
en particulier det(A) # 0 et donc A est de rang 3. Les valeurs propres sont +7 avec
multiplicité 2 et —2 avec multiplicité 1. La signature de A est donc (p,q) = (2,1). En
particulier A n’est pas définie positive.

De maniere plus élémentaire, on a

= 322 + 6y° + 32% — day + Sxz + dyz

Wik e 8

(z,y,2)A
8 2 2
xy + -xz | +6y° 4+ 327 + 4dyz

—3 (22—
(=55

2 4\? 14 7 28
-3 = 2ol 22
( 3>+3y 3z+3yz

S
|
|
<
+
N

w

2 4\? 71
=3(x—cy+-2] —=(z—2y) + 14y
(x 3y+ 32> 3(2 y)” + 14y

ce qui montre que la signature est égale a (2, 1).

Exercice 9. (a) Notons g la forme bilinéaire symétrique sur R” dont la matrice de Gram
est G. Observons que

g(z,y) = (z,Gy) = (z, A'Ay) = (Az, Ay).

Soit {vy,...,v,} C R™ une base orthonormée formée de vecteur propre pour G. Donc
Guv; = p?v; (on rappelle que les valeurs singulicres de A sont les racines carrées des
valeurs propres de (), et notons w; = iAvi € R™ pour 1 < ¢ < r. On a alors pour
1<i,j<r:

1 1 1 j
<U)Z',U)j> = <;AU¢, ;AU]‘> = W(Ui,GUj> = %<U¢,Uj> = 6ij7
4 J (2] i
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car Gu; = piv;. Ainsi {wy, ..., w,} est une base orthonormée de I'image Tm(A). Si
r = m (i.e. A est surjective), alors {wi,...,w,} est la base cherchée. Dans le cas ou
m > r, alors on compléete cette base en une base orthonormée {wy, ..., w,} de R™.
On vérifie facilement que les bases {vy,...,v,} C R™ et {wy,...,w,} C R™ vérifient

les propriétés voulues.

(b) Notons f € Z(R™ R™) I'application linéaire définie par f(x) = Az. La matrice
de f dans les bases canoniques est la matrice A et la matrice de f dans les bases {v;} et
{w,} est la matrice D = (d;;) dont les coefficients sont

o
e

0 sinon.

Ainsi A et D sont deux matrices de la méme applications linéaire exprimées dans des
bases différentes. On a donc D = Q 'AP ou P,Q sont les matrices de changements de
bases a la source et au but de f. Ces matrices sont orthogonales puisque toutes les bases
considérées sont des bases orthonormées.

On peut aussi raisonner ainsi : Notons P € O(n) la matrice orthogonale dont la "¢
colonne est le vecteur v; et @ € O(m) la matrice orthogonale dont la ¢ colonne est le
vecteur w;. La relation AP = QD est alors équivalente a Av; = p;w;.



