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Exercice 1. (a) On se souvient que la matrice A = (aij) de l’application linéaire f dans
les bases B et B′ est définie par f(vj) =

∑m
i=1 aijwi. Si B′ est orthonormée on a alors

⟨wi, f(vj)⟩ = ⟨wi,
m∑

k=1

akjwk⟩ =
m∑

k=1

akj⟨wi, wk⟩︸ ︷︷ ︸
=δik

= aij.

(Noter qu’on n’a pas besoin de supposer que la base B′ est orthonormée).

(b) La matrice P de changement de bases est définie par la relation wi =
∑n

r=1 privr.
On a donc

⟨wi, wj⟩ =
〈

n∑
r=1

privr,
n∑

s=1

psjvs

〉

=
n∑

r=1

n∑
s=1

pripsj⟨vr, vs⟩

=
n∑

r=1

priprj

=
n∑

r=1

pt
riprj.

(On a utilise à la troisième ligne l’hypothèse ⟨vr, vs⟩ = δrs) .
Ce calcul montre que la base B′ est orthonormée si et seulement si les coefficients de

la matrice P tP sont δij, c’est-à-dire si P tP est la matrice identité.

Exercice 2. (a) C’est la troisième réponse qui est correcte. Un vecteur v tel que g(v, v) =
0 s’appelle un vecteur isotrope, et il existe un vecteur isotrope non nul si et seulement si
0 < p < n ( donc si g n’est ni défini positive ni définie négative).

(b) La bonne réponse est la première option, qui correspond exactement à la définition
d’une forme bilinéaire non dégénérée. (la troisième option dit au contraire que la forme
bilinéaire est dégénérée (attention à la logique !) et la seconde option ne dit rien du tout
sur la forme bilinéaire car on peut prendre v = 0).

Exercice 3. 1. Avant de répondre à la première question, on rappelle d’abord que le
rang d’une matrice A ∈ Mn(K) est la dimension de l’image de l’application linéaire
associée (i.e. l’application x 7→ Ax). Il est aussi clair, par le théorème du rang, que
rang(A) = n − dim(Ker(A)).
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Par des résultats du premier semestre, on sait que si A et A′ sont deux matrices
telles que A′ = QAP où P et Q sont des matrices inversibles, alors rang(A) =
rang(A′) (on peut par exemple invoquer que sous cette condition A et A′ repré-
sentent la même application dans des bases différentes. Voir aussi le théorème
5.12.4 dans le polycopié du premier semestre.)

La preuve de l’affirmation (a) est maintenant très simple : deux matrices A et
B sont congruentes si et seulement s’il existe une matrice P inversible telle que
A = P tBP . Comme P est inversible, P t l’est aussi et donc A et B ont même rang
par l’argument précédent.
Remarque 1. Si K = R est le corps des réel, l’énoncé (a) peut aussi être vu
comme une conséquence du théorème de Sylvester.

2. Soit β la forme bilinéaire symétrique dont la matrice de Gram est A. Par le théo-
rème de diagonalisation des formes bilinéaires symétriques vu au cours (théorème
10.4.1), on sait qu’il existe une base orthogonale {v1, ..., vn} pour β. Quitte à ré-
ordonner la base, on peut supposer que Q(vk) = 0 si k > r = Rang(Q). On a donc
dans notre base

Q(vi) = β(vi, vi) = ai ̸= 0 si 1 ≤ i ≤ r, Q(vk) = β(vk, vk) = 0 si k > r,

et β(vi, vj) = 0 si i ̸= j. Rappelons que tout nombre complexe admet une racine
carrée. En définissant une nouvelle base {w1, ..., wn} par wi = vi√

ai
pour i = 1, ..., r

et sinon wi = vi, on obtient que dans la base des wi, la matrice à la forme voulue
car pour i = 1, . . . , r

β(wi, wi) = Q(wi) = 1
ai

Q(vi) = 1.

A titre d’exemple, on a la congruence suivante dans M2(C) :(
1 0
0 −1

)
∼
(

1 0
0 i

)(
1 0
0 −1

)(
1 0
0 i

)
=
(

1 0
0 1

)
(avec i =

√
−1).

Exercice 4. Notons g la forme bilinéaire symétrique associée à Q, on a donc

g

((
x1
x2

)
,

(
y1
y2

))
= x1y1 − x2y2.

Par conséquent, les vecteurs u =
(

u1
u2

)
et v =

(
v1
v2

)
forment une base de Sylvester pour

la forme quadratique Q si et seulement si

u2
1 − u2

2 = 1, v2
1 − v2

2 = −1, u1v1 − u2v2 = 0.
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On sait qu’il existe s ∈ R unique tel que u2 = sinh(s). Alors u2
1 = 1 + u2

2 = cosh(s)2.
Par conséquent

u =
(

ε cosh(s)
sinh(s)

)
,

avec ε = ±1. De même il existe t ∈ R unique tel que v1 = sinh(t) et donc

v =
(

sinh(t)
ε′ cosh(t)

)
avec ε′ = ±1. Finalement la condition u1v1 − u2v2 = 0 nous dit que u2

u1
= v1

v2
; nous avons

donc tanh(s) = ε′ tanh(t), c’est-à-dire t = ±s, et par conséquent

v =
(

sinh(s)
ε cosh(s)

)
si t = s et v = −

(
sinh(s)

ε cosh(s)

)
si t = −s.

Exercice 5. (a) L’indicatrice positive S+(V, Q), l’indicatrice négative S−(V, Q) et le cône
isotrope S0(V, Q) d’une forme quadratique Q définie sur une espace vectoriel réel V sont
définis respectivement par

S+(V, Q) = {x ∈ V bQ(x) = +1},

S−(V, Q) = {x ∈ V bQ(x) = −1},

S0(V, Q) = {x ∈ V bQ(x) = 0}.

(b) Soient Q1, Q2 vérifiant les hypothèses en (b) et soit x ∈ V . On doit prouver que
Q1(x) = Q2(x). On distingue trois cas.

1. Si α = Q1(x) > 0, on pose x′ = x/
√

α. Alors x′ ∈ S+(V, Q1) = S+(V, Q2). Donc
Q2(x′) = 1 et Q2(x) = αQ2(x′) = α = Q1(x).

2. Si α = Q1(x) < 0, on pose x′ = x/
√

−α. Alors x′ ∈ S−(V, Q1) = S−(V, Q2). Donc
Q2(x′) = −1 et Q2(x) = (−α)Q2(x′) = α = Q1(x).

3. Si Q1(x) = 0, alors x ∈ S0(V, Q1) = S0(V, Q2). Donc Q2(x) = 0.
On a démontré que dans tous les cas Q2(x) = Q1(x).

(c) Notons Q2 la forme quadratique sur V définie par Q2(x) = Q(f(x)), et observons
que l’hypothèse f(S+(V, Q)) = S+(V, Q) implique que

x ∈ S+(V, Q2) ⇔ Q2(x) = Q(f(x)) = 1 ⇔ f(x) ∈ S+(V, Q) ⇔ x ∈ S+(V, Q).

Cela prouve que S+(V, Q2) = S+(V, Q). On prouve de même que S−(V, Q2) = S−(V, Q)
et S0(V, Q2) = S0(V, Q). Par le point (b) on déduit maintenant que Q2 = Q, c’est-à-dire
Q(f(x)) = Q(x) pour tout x ∈ V .
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Exercice 6. (a) Oui. Le critère pour qu’une matrice soit définie positive comprend en
particulier la condition que son déterminant doit être > 0, donc non nul, ce qui garantit
qu’elle doit être inversible.

(b) La réponse est négative. Si A′ = P tAP , alors det(A′) = det(P )2 det(A) ̸= det(A)
en général (mais si elles sont orthogonalement congruentes, elles ont le même détermi-
nant).

(c) Non. Par exemple la forme quadratique sur R2 définie par

Q(x1, x2) = x2
1 + x2

2 + 3x1x2

vérifie Q(1, 0) = Q(0, 1) = 1 > 0 mais Q(1, −1) = −1.

(d) Correct (il suffit de relire les définitions).

Exercice 7. 1. En calculant la polarisation de Q, on obtient β(u, v) = u1v2 + u2v1

2. La matrice de Gram de cette forme par rapport à la base canonique est B =(
0 1
1 0

)
.

3. Nous commençons par choisir un vecteur arbitraire u1 tel que Q(u1) = ±1. On ne
peut pas prendre un multiple de e1 = (1, 0) car Q(e1) = 0. Un vecteur convenable
est u1 = (1, 1

2). Cherchons maintenant un vecteur v = (x, y) tel que β(u1, v) = 0,
c’est-à-dire 1

2x+y = 0. Un tel vecteur est v = (2, −1), ce vecteur vérifie Q(v) = −4
et le second vecteur de notre base généralisée est donc donné par

u2 = v√
|Q(v|

=
(

1, −1
2

)
.

La base orthonormale généralisée (base de Sylvester) cherchée est donc {(1, 1
2), (1, −1

2)}.
4. La base précédente vérifie Q(u1) = 1, Q(u2) = −1 et β(u1, u2) = 0. La signature

de Q est donc (p, q) = (1, 1).
5. Nous trouvons directement que le polynôme caractéristique de B est

χB(t) = t2 − 1

donc les valeurs propres de B sont λ1 = 1 et λ2 = −1. Des vecteurs propres sont
faciles à trouver. Par exemple

(
1
1

)
est vecteur propre pour λ = 1 et

(
1

−1

)
est

vecteur propre pour λ = −1. Il est clair que ces vecteurs propres sont orthogo-
naux (ce qui est compatible avec le fait que B est une matrice symétrique). Par
conséquent, il suffit de les renormaliser pour avoir une base propre orthonormée.

4



EPFL - Printemps 2025
Algèbre linéaire avancée II Section de Physique
Solution 12

Alexis Michelat
Exercices

15 mai 2025

On a donc u1 =
(

1√
2

1√
2

)
et u2 =

(
1√
2

− 1√
2

)
. La matrice modale orthogonale

cherchée est donc P =
(

1√
2 − 1√

2
1√
2

1√
2

)
. On vérifie que P tBP =

(
1 0
0 −1

)
.

Remarque La base trouvée en (e) est aussi une base de Sylvester, c’est dû au fait
que les valeurs propres de B sont ±1. En général la diagonalisation orthogonale ne donne
pas directement une base de Sylvester (bien sûr après normalisation des vecteurs on a
bien une base de Sylvester).

Exercice 8. On trouve que le polynôme caractéristique vaut χA = −(X − 7)2(X + 2),
en particulier det(A) ̸= 0 et donc A est de rang 3. Les valeurs propres sont +7 avec
multiplicité 2 et −2 avec multiplicité 1. La signature de A est donc (p, q) = (2, 1). En
particulier A n’est pas définie positive.

De manière plus élémentaire, on a

(x, y, z)A

x
y
z

 = 3x2 + 6y2 + 3z2 − 4xy + 8xz + 4yz

= 3
(

x2 − 4
3xy + 8

3xz

)
+ 6y2 + 3z2 + 4yz

= 3
(

x − 2
3y + 4

3z

)2

+ 14
3 y2 − 7

3z2 + 28
3 yz

= 3
(

x − 2
3y + 4

3z

)2

− 7
3(z − 2y)2 + 14y2

ce qui montre que la signature est égale à (2, 1).

Exercice 9. (a) Notons g la forme bilinéaire symétrique sur Rn dont la matrice de Gram
est G. Observons que

g(x, y) = ⟨x, Gy⟩ = ⟨x, AtAy⟩ = ⟨Ax, Ay⟩.

Soit {v1, . . . , vn} ⊂ Rn une base orthonormée formée de vecteur propre pour G. Donc
Gvi = µ2

i vi (on rappelle que les valeurs singulières de A sont les racines carrées des
valeurs propres de G), et notons wi = 1

µi
Avi ∈ Rm pour 1 ≤ i ≤ r. On a alors pour

1 ≤ i, j ≤ r :

⟨wi, wj⟩ =
〈

1
µi

Avi,
1
µj

Avj

〉
= 1

µiµj

⟨vi, Gvj⟩ = µj

µi

⟨vi, vj⟩ = δij,
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car Gvj = µ2
jvj. Ainsi {w1, . . . , wr} est une base orthonormée de l’image Im(A). Si

r = m (i.e. A est surjective), alors {w1, . . . , wr} est la base cherchée. Dans le cas où
m > r, alors on complète cette base en une base orthonormée {w1, . . . , wm} de Rm.

On vérifie facilement que les bases {v1, . . . , vn} ⊂ Rn et {w1, . . . , wm} ⊂ Rm vérifient
les propriétés voulues.

(b) Notons f ∈ L (Rn,Rm) l’application linéaire définie par f(x) = Ax. La matrice
de f dans les bases canoniques est la matrice A et la matrice de f dans les bases {vi} et
{wj} est la matrice D = (dij) dont les coefficients sont

dij =
{

µi si i = j ≤ r,

0 sinon.

Ainsi A et D sont deux matrices de la même applications linéaire exprimées dans des
bases différentes. On a donc D = Q−1AP où P, Q sont les matrices de changements de
bases à la source et au but de f . Ces matrices sont orthogonales puisque toutes les bases
considérées sont des bases orthonormées.

On peut aussi raisonner ainsi : Notons P ∈ O(n) la matrice orthogonale dont la ieme

colonne est le vecteur vi et Q ∈ O(m) la matrice orthogonale dont la ieme colonne est le
vecteur wi. La relation AP = QD est alors équivalente à Avi = µiwi.
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